本文作者:游客

手把手:用Python搭建机器学习模型预测黄金价格

游客 2025-08-07 7
手把手:用Python搭建机器学习模型预测黄金价格摘要: 新年总是跟黄金密不可分。新年第一天,让我们尝试用python搭建一个...

新年总是跟黄金密不可分。新年第一天,让我们尝试用python搭建一个机器学习线性回归模型,预测金价!

自古以来,黄金一直作为货币而存在,就是在今天,黄金也具有非常高的储藏价值,那么有没有可能预测出黄金价格的变化趋势呢?

答案是肯定的,让我们使用机器学习中的回归算法来预测世界上贵重金属之一,黄金的价格吧。

我们将建立一个机器学习线性回归模型,它将从黄金ETF (GLD)的历史价格中获取信息,并返回黄金ETF价格在第二天的预测值。

GLD 是最大的以黄金进行直接投资的ETF交易基金。

(详见:http://www.etf.com/GLD)

在python的开发环境下用机器学习预测黄金价格的步骤:

  • 导入Python库并读取黄金ETF 的数据

  • 定义解释变量

  • 将数据切分为模型训练数据集和测试数据集

  • 建立线性回归模型

  • 预测黄金ETF的价格

导入Python库并读取黄金 ETF 的数据

首先:导入实现此策略所需的所有必要的库(LinearRegression,pandas,numpy,matplotlib,seaborn和fix_yahoo_finance)

# LinearRegression is a machine learning library for linear regression from sklearn.linear_model import LinearRegression # pandas and numpy are used for data manipulation import pandas as pd import numpy as np # matplotlib and seaborn are used for plotting graphs import matplotlib.pyplot as plt import seaborn # fix_yahoo_finance is used to fetch data import fix_yahoo_finance as yf

然后我们读取过去10年间每天黄金ETF的价格数据,并将数据储存在Df中。我们移除那些不相关的变量并使用dropna函数删除NaN值。然后我们绘制出黄金ETF的收盘价格。

# Read data Df = yf.download('GLD','2008-01-01','2017-12-31') # Only keep close columns Df=Df[['Close']] # Drop rows with missing values Df= Df.dropna() # Plot the closing price of GLD Df.Close.plot(figsize=(10,5)) plt.ylabel("Gold ETF Prices") plt.show()

输出

手把手:用Python搭建机器学习模型预测黄金价格

定义解释变量

解释变量是被用来决定第二天黄金ETF价格数值的变量。简单地说,就是我们用来预测黄金ETF价格的特征值。本例中的解释变量是过去3天和9天的价格移动平均值。我们使用dropna()函数删除NaN值,并将特征变量存于X中。

然而,你还可以在X中放入更多你认为对于预测黄金ETF价格有用的变量。这些变量可以是技术指标,也可以是另一种ETF的价格(如黄金矿工ETF (简称GDX)或石油ETF(简称USO))或美国经济数据。

Df['S_3'] = Df['Close'].shift(1).rolling(window=3).mean() Df['S_9']= Df['Close'].shift(1).rolling(window=9).mean() Df= Df.dropna() X = Df[['S_3','S_9']] X.head()

输出

手把手:用Python搭建机器学习模型预测黄金价格

定义因变量

同样,因变量是取决于解释变量的“被解释变量”。简单地说,在这里就是我们试图预测的黄金ETF价格。我们将黄金ETF的价格赋值为y。

y = Df['Close'] y.head()

输出

2008-02-08    91.000000 2008-02-11    91.330002 2008-02-12    89.330002 2008-02-13    89.440002 2008-02-14    89.709999 Name: Close, dtype: float64

将数据切分为模型训练数据集和测试数据集

在此步骤中,我们将预测变量(解释变量)数据和输出(因变量)数据拆分为训练数据集和测试数据集。训练数据用于建立线性回归模型,将输入与预期输出配对。测试数据用于评估模型的训练效果。

手把手:用Python搭建机器学习模型预测黄金价格

  • 前80%的数据用于训练模型,其余的数据用来测试模型。

  • X_train 和y_train是训练数据集。

  • X_test & y_test是测试数据集。

t=.8 t = int(t*len(Df)) # Train dataset X_train = X[:t] y_train = y[:t]   # Test dataset X_test = X[t:] y_test = y[t:]

建立线性回归模型

接下来我们将建立一个线性回归模型。什么是线性回归呢?

如果我们试图捕捉可以最优解释Y观测值的X变量和Y变量之间的数学关系,我们将在X的观测值形成的散点图中去拟合一条线,那么这条线,也就是x和y之间的方程就被称为线性回归分析。

手把手:用Python搭建机器学习模型预测黄金价格

再进一步地说,回归解释了因变量在自变量上的变化。因变量y是你想要预测的变量。自变量x是用来预测因变量的解释变量。下面的回归方程描述了这种关系:

Y = m1 * X1 + m2 * X2 + CGold ETF price = m1 * 3 days moving average + m2 * 15 days moving average + c

然后我们利用拟合方法来拟合自变量和因变量(x和y),从而生成系数和回归常数。

linear = LinearRegression().fit(X_train,y_train) print "Gold ETF Price =", round(linear.coef_[0],2), \ "* 3 Days Moving Average", round(linear.coef_[1],2), \ "* 9 Days Moving Average +", round(linear.intercept_,2)

输出

黄金ETF价格=1.2×3天的移动平均价-0.2×9天的移动平均价+0.39

预测黄金ETF的价格

现在,是时候检查模型是否在测试数据集中有效了。我们使用由训练数据集建立的线性模型来预测黄金ETF的价格。预测模型可以得到给定解释变量X后相应的黄金ETF价格(y)。

predicted_price = linear.predict(X_test)   predicted_price = pd.DataFrame(predicted_price,index=y_test.index,columns = ['price'])   predicted_price.plot(figsize=(10,5))   y_test.plot()   plt.legend(['predicted_price','actual_price'])   plt.ylabel("Gold ETF Price")   plt.show()

输出

手把手:用Python搭建机器学习模型预测黄金价格

图表显示了黄金ETF价格的预测值和实际值(蓝线是预测值,绿线是实际值)。

现在,让我们使用score()函数来计算模型的拟合优度。

r2_score = linear.score(X[t:],y[t:])*100   float("{0:.2f}".format(r2_score))

可以看出,模型的R²是95.81%。R²总是在0到100%之间。接近100%的分数表明该模型能很好地解释黄金ETF的价格。

祝贺你,你刚刚学会了一种基本而又强大的机器学习技巧。

文章版权及转载声明

本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 3561739510@qq.com 举报,一经查实,本站将立刻删除。
本文地址:https://www.zgzngt.com/article-12385-1.html

阅读
分享